Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes

Author(s):  
Ho-Dong Park ◽  
Bomchul Kim ◽  
Enkyong Kim ◽  
Tokio Okino
1995 ◽  
Vol 32 (4) ◽  
pp. 187-196 ◽  
Author(s):  
L. Pechar

The study presents data on the species composition of cyanobacterial water blooms in Czech fish ponds from the 1950s to the 1990s. Since the 1950s, a shift from large-colonial Aphanizomenon flos-aquae var. flos-aquae through Microcystis aeruginosa and small-colonial species of Anabaena to single-filament species (Planktohrix agardhii, Limnothrix redekei, Aphanizomenon gracile) or single-cell forms (Microcystis ichtyoblabe), has been observed. The changes in the species composition of the water blooms are closely related to changes in fishery management (increase in fish stock, increase in application of organic fertilizers). At present the high predation of fish upon zooplankton results in elimination of large colonial blooms of A. flos-aquae associated with large filtering zooplankton (Daphnia). Low grazing pressure of zooplankton, low light conditions and low N:P ratios are suitable conditions for mass development of the small species of cyanobacteria. High pH is not necessary to achieve cyanobacteria dominance.


2020 ◽  
Vol 152 ◽  
pp. 105881
Author(s):  
Carlos Silva ◽  
António Anselmo ◽  
Inês P.E. Macário ◽  
Daniela de Figueiredo ◽  
Fernando J.M. Gonçalves ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3013
Author(s):  
Larissa Souza Passos ◽  
Éryka Costa Almeida ◽  
Claudio Martin Pereira de Pereira ◽  
Alessandro Alberto Casazza ◽  
Attilio Converti ◽  
...  

Cyanobacterial blooms and strains absorb carbon dioxide, drawing attention to its use as feed for animals and renewable energy sources. However, cyanobacteria can produce toxins and have a low heating value. Herein, we studied a cyanobacterial strain harvested during a bloom event and analyzed it to use as animal feed and a source of energy supply. The thermal properties and the contents of total nitrogen, protein, carbohydrate, fatty acids, lipid, and the presence of cyanotoxins were investigated in the Microcystis aeruginosa LTPNA 01 strain and in a bloom material. Microcystins (hepatotoxins) were not detected in this strain nor in the bloom material by liquid chromatography coupled to mass spectrometry. Thermogravimetric analysis showed that degradation reactions (devolatilization) initiated at around 180 °C, dropping from approximately 90% to 20% of the samples’ mass. Our work showed that despite presenting a low heating value, both biomass and non-toxic M. aeruginosa LTPNA 01 could be used as energy sources either by burning or producing biofuels. Both can be considered a protein and carbohydrate source similar to some microalgae species as well as biomass fuel. It could also be used as additive for animal feed; however, its safety and potential adverse health effects should be further investigated.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2147
Author(s):  
Anjali Krishnan ◽  
Xiaozhen Mou

Harmful cyanobacterial blooms pose an environmental health hazard due to the release of water-soluble cyanotoxins. One of the most prevalent cyanotoxins in nature is microcystins (MCs), a class of cyclic heptapeptide hepatotoxins, and they are produced by several common cyanobacteria in aquatic environments. Once released from cyanobacterial cells, MCs are subjected to physical chemical and biological transformations in natural environments. MCs can also be taken up and accumulated in aquatic organisms and their grazers/predators and induce toxic effects in several organisms, including humans. This brief review aimed to summarize our current understanding on the chemical structure, exposure pathway, cytotoxicity, biosynthesis, and environmental transformation of microcystins.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1831
Author(s):  
Natalia Herrera ◽  
Fernando Echeverri

Although several theories have been postulated to explain cyanobacterial blooms, their biochemical origin has not yet been found. In this work, we explore the existence of bacterial communication, called quorum sensing, in Microcystis aeruginosa and Cylindrospermopsis raciborskii. Thus, the application of several known acylhomoserine lactones to cultures of both cyanobacteria causes profound metabolic. At 72 h post-application, some of them produced substantial increases in cell proliferation, while others were inhibitors. There was a correlation with colony-forming activity for most of them. According to ELISA analysis, the microcystin levels were increased with some lactones. However, there was a clear difference between M. aeruginosa and C. raciborskii culture since, in the first one, there was an inducing effect on cell proliferation, while in C. raciborskii, the effects were minor. Besides, there were compound inhibitors and inducers of microcystins production in M. aeruginosa, but almost all compounds were only inducers of saxitoxin production in C. raciborskii. Moreover, each lactone appears to be involved in a specific quorum sensing process. From these results, the formation of cyanobacterial blooms in dams and reservoirs could be explained since lactones may come from cyanobacteria and other sources as bacterial microflora-associated or exogenous compounds structurally unrelated to lactones, such as drugs, industrial effluents, and agrochemicals.


Author(s):  
Jessica A. Rubin ◽  
Josef H. Görres

During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans’ damage to Earth’s freshwater. We also identify areas where research is needed.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 699
Author(s):  
Małgorzata Kucała ◽  
Michał Saładyga ◽  
Ariel Kaminski

Cyanotoxins are harmful to aquatic and water-related organisms. In this study, Lemna trisulca was tested as a phytoremediation agent for three common cyanotoxins produced by bloom-forming cyanobacteria. Cocultivation of L. trisulca with Dolichospermum flos-aquae in BG11 medium caused a release of the intracellular pool of anatoxin-a into the medium and the adsorption of 92% of the toxin by the plant—after 14 days, the total amount of toxin decreased 3.17 times. Cocultivation with Raphidopsis raciborskii caused a 2.77-time reduction in the concentration of cylindrospermopsin (CYN) in comparison to the control (62% of the total pool of CYN was associated with the plant). The greatest toxin limitation was noted for cocultivation with Microcystis aeruginosa. After two weeks, the microcystin-LR (MC-LR) concentration decreased more than 310 times. The macrophyte also influenced the growth and development of cyanobacteria cells. Overall, 14 days of cocultivation reduced the biomass of D. flos-aquae, M. aeruginosa, and R. raciborskii by 8, 12, and 3 times, and chlorophyll a concentration in comparison to the control decreased by 17.5, 4.3, and 32.6 times, respectively. Additionally, the macrophyte stabilized the electrical conductivity (EC) and pH values of the water and affected the even uptake of cations and anions from the medium. The obtained results indicate the biotechnological potential of L. trisulca for limiting the development of harmful cyanobacterial blooms and their toxicity.


Sign in / Sign up

Export Citation Format

Share Document